LaTeX Report Generation
- class SAES.latex_generation.stats_table.Anova(data: str | DataFrame, metrics: str | DataFrame, metric: str, normal: bool = True)
Bases:
Table
Class for generating the Anova table.
- compute_table() None
Computes the Anova table.
- show() None
Displays the table in a Jupyter notebook.
- class SAES.latex_generation.stats_table.Friedman(data: str | DataFrame, metrics: str | DataFrame, metric: str, normal: bool = False, friedman_test: str = 'base')
Bases:
Table
Class for generating the Friedman table.
- compute_table() None
Computes the Friedman table.
- show() None
Displays the table in a Jupyter notebook.
- class SAES.latex_generation.stats_table.FriedmanPValues(data: str | DataFrame, metrics: str | DataFrame, metric: str, normal: bool = False)
Bases:
Table
Class for generating the Friedman table.
- compute_table() None
Computes the Friedman table.
- show() None
Displays the table in a Jupyter notebook.
- class SAES.latex_generation.stats_table.MeanMedian(data: str | DataFrame, metrics: str | DataFrame, metric: str, normal: bool = False)
Bases:
Table
Class for generating the Mean and Standard Deviation or Median and Interquartile Range table.
- compute_table() None
Computes the Mean and Standard Deviation or Median and Interquartile Range table.
- show() None
Displays the table in a Jupyter notebook.
- class SAES.latex_generation.stats_table.TTest(data: str | DataFrame, metrics: str | DataFrame, metric: str, normal: bool = True)
Bases:
Table
Class for generating the T-Test table.
- compute_table() None
Computes the T-Test table.
- show() None
Displays the table in a Jupyter notebook.
- class SAES.latex_generation.stats_table.TTestPivot(data: str | DataFrame, metrics: str | DataFrame, metric: str, normal: bool = True, pivot: str = None)
Bases:
Table
Class for generating the T-Test Pivot table.
- compute_table() None
Computes the T-Test Pivot table.
- show() None
Displays the table in a Jupyter notebook.
- class SAES.latex_generation.stats_table.Table(data: str | DataFrame, metrics: str | DataFrame, metric: str, normal: bool = False)
Bases:
ABC
Abstract class for generating statistical tables.
- Attributes:
- data (pd.DataFrame):
A pandas DataFrame containing the performance results of different algorithms across multiple instances.
- maximize (bool):
A boolean value indicating whether the metric should be maximized or minimized.
- metric (str):
The metric to be used for comparison.
- normality (bool):
A boolean value indicating whether the data is normally distributed.
- normal (bool):
A boolean value indicating whether the data should be treated as normally distributed.
- algorithms (np.ndarray):
An array containing the names of the algorithms.
- instances (np.ndarray):
An array containing the names of the instances.
- mean_median (pd.DataFrame):
A DataFrame containing the mean or median values for each algorithm and instance.
- std_iqr (pd.DataFrame):
A DataFrame containing the standard deviation or interquartile range values for each algorithm and instance.
- table (pd.DataFrame):
A DataFrame containing the formatted table data.
- latex_doc (str):
A string containing the LaTeX document structure for the table.
- logger (Logger):
A logger object to record and display log messages.
- Methods:
- __init__(data: str | pd.DataFrame, metrics: str | pd.DataFrame, metric: str, normal: bool = False):
Initializes the Table object with the given data, metrics, metric, and normality.
- compute_base_table():
Computes the base table with mean/median and standard deviation/interquartile range values.
- save(output_path: str, sideways: bool = False):
Saves the table to a LaTeX file.
- create_latex_table(sideways: bool = False):
Computes the LaTeX code for the table in string format.
- show():
Displays the table in a Jupyter notebook.
- compute_table():
Computes the specifies table guided by the implementation of the subclass.
- compute_base_table() None
Computes the base table with mean/median and standard deviation/interquartile range values.
- Example:
>>> from SAES.latex_generation.stats_table import MeanMedian >>> >>> data = pd.read_csv("data.csv") >>> metrics = pd.read_csv("metrics.csv") >>> metric = "HV" >>> table = MeanMedian(data, metrics, metric) >>> table.compute_base_table()
- abstract compute_table() None
Computes the specifies table guided by the implementation of the subclass.
- Example:
>>> from SAES.latex_generation.stats_table import MeanMedian >>> >>> data = pd.read_csv("data.csv") >>> metrics = pd.read_csv("metrics.csv") >>> metric = "HV" >>> table = MeanMedian(data, metrics, metric) >>> table.compute_table()
- create_latex_table(sideways: bool = False) None
Computes the LaTeX code for the table in string format.
- Args:
- sideways (bool):
A boolean value indicating whether the table should be displayed in landscape mode. Default is False.
- Returns:
None
- Example:
>>> from SAES.latex_generation.stats_table import MeanMedian >>> >>> data = pd.read_csv("data.csv") >>> metrics = pd.read_csv("metrics.csv") >>> metric = "HV" >>> table = MeanMedian(data, metrics, metric) >>> table.create_latex_table()
- rank_top_two(instance: str) tuple
Returns the first and second best algorithms based on the data.
- save(output_path: str, file_name: str = None, sideways: bool = False) None
Saves the table to a LaTeX file.
- Args:
- output_path (str):
The path to the directory where the LaTeX file will be saved.
- file_name (str):
The name of the LaTeX file. Default is None.
- sideways (bool):
A boolean value indicating whether the table should be displayed in landscape mode. Default is False.
- Returns:
None
- Example:
>>> from SAES.latex_generation.stats_table import MeanMedian >>> import os >>> >>> data = pd.read_csv("data.csv") >>> metrics = pd.read_csv("metrics.csv") >>> metric = "HV" >>> table = MeanMedian(data, metrics, metric) >>> table.save(os.getcwd(), sideways=True)
- abstract show() None
Displays the table in a Jupyter notebook.
- class SAES.latex_generation.stats_table.Wilcoxon(data: str | DataFrame, metrics: str | DataFrame, metric: str, normal: bool = False)
Bases:
Table
Class for generating the Wilcoxon table.
- compute_table() None
Computes the Wilcoxon table.
- show() None
Displays the table in a Jupyter notebook.
- class SAES.latex_generation.stats_table.WilcoxonPivot(data: str | DataFrame, metrics: str | DataFrame, metric: str, normal: bool = False, pivot: str = None)
Bases:
Table
Class for generating the Wilcoxon Pivot table.
- compute_table() None
Computes the Wilcoxon Pivot table.
- show() None
Displays the table in a Jupyter notebook.