import random
import threading
from copy import copy
from math import sqrt
from typing import List, Optional, TypeVar
import numpy
from jmetal.config import store
from jmetal.core.algorithm import DynamicAlgorithm, ParticleSwarmOptimization
from jmetal.core.operator import Mutation
from jmetal.core.problem import DynamicProblem, FloatProblem
from jmetal.core.solution import FloatSolution
from jmetal.util.archive import ArchiveWithReferencePoint, BoundedArchive
from jmetal.util.comparator import DominanceComparator, Comparator
from jmetal.util.evaluator import Evaluator
from jmetal.util.generator import Generator
from jmetal.util.termination_criterion import TerminationCriterion
R = TypeVar("R")
"""
.. module:: SMPSO
:platform: Unix, Windows
:synopsis: Implementation of SMPSO.
.. moduleauthor:: Antonio Benítez-Hidalgo <antonio.b@uma.es>
"""
[docs]
class SMPSO(ParticleSwarmOptimization):
def __init__(
self,
problem: FloatProblem,
swarm_size: int,
mutation: Mutation,
leaders: Optional[BoundedArchive],
dominance_comparator: Comparator = DominanceComparator(),
termination_criterion: TerminationCriterion = store.default_termination_criteria,
swarm_generator: Generator = store.default_generator,
swarm_evaluator: Evaluator = store.default_evaluator,
):
"""This class implements the SMPSO algorithm as described in
* SMPSO: A new PSO-based metaheuristic for multi-objective optimization
* MCDM 2009. DOI: `<http://dx.doi.org/10.1109/MCDM.2009.4938830/>`_.
The implementation of SMPSO provided in jMetalPy follows the algorithm template described in the algorithm
templates section of the documentation.
:param problem: The problem to solve.
:param swarm_size: Size of the swarm.
:param max_evaluations: Maximum number of evaluations/iterations.
:param mutation: Mutation operator (see :py:mod:`jmetal.operator.mutation`).
:param leaders: Archive for leaders.
"""
super(SMPSO, self).__init__(problem=problem, swarm_size=swarm_size)
self.swarm_generator = swarm_generator
self.swarm_evaluator = swarm_evaluator
self.termination_criterion = termination_criterion
self.observable.register(termination_criterion)
self.mutation_operator = mutation
self.leaders = leaders
self.c1_min = 1.5
self.c1_max = 2.5
self.c2_min = 1.5
self.c2_max = 2.5
self.r1_min = 0.0
self.r1_max = 1.0
self.r2_min = 0.0
self.r2_max = 1.0
self.min_weight = 0.1
self.max_weight = 0.1
self.change_velocity1 = -1
self.change_velocity2 = -1
self.dominance_comparator = dominance_comparator
self.speed = numpy.zeros((self.swarm_size, self.problem.number_of_variables()), dtype=float)
self.delta_max, self.delta_min = (
numpy.empty(problem.number_of_variables()),
numpy.empty(problem.number_of_variables()),
)
[docs]
def create_initial_solutions(self) -> List[FloatSolution]:
return [self.swarm_generator.new(self.problem) for _ in range(self.swarm_size)]
[docs]
def evaluate(self, solution_list: List[FloatSolution]):
return self.swarm_evaluator.evaluate(solution_list, self.problem)
[docs]
def stopping_condition_is_met(self) -> bool:
return self.termination_criterion.is_met
[docs]
def initialize_global_best(self, swarm: List[FloatSolution]) -> None:
for particle in swarm:
self.leaders.add(copy(particle))
[docs]
def initialize_particle_best(self, swarm: List[FloatSolution]) -> None:
for particle in swarm:
particle.attributes["local_best"] = copy(particle)
[docs]
def initialize_velocity(self, swarm: List[FloatSolution]) -> None:
for i in range(self.problem.number_of_variables()):
self.delta_max[i] = (self.problem.upper_bound[i] - self.problem.lower_bound[i]) / 2.0
self.delta_min = -1.0 * self.delta_max
[docs]
def update_velocity(self, swarm: List[FloatSolution]) -> None:
for i in range(self.swarm_size):
best_particle = copy(swarm[i].attributes["local_best"])
best_global = self.select_global_best()
r1 = round(random.uniform(self.r1_min, self.r1_max), 1)
r2 = round(random.uniform(self.r2_min, self.r2_max), 1)
c1 = round(random.uniform(self.c1_min, self.c1_max), 1)
c2 = round(random.uniform(self.c2_min, self.c2_max), 1)
wmax = self.max_weight
wmin = self.min_weight
for var in range(len(swarm[i].variables)):
self.speed[i][var] = self.__velocity_constriction(
self.__constriction_coefficient(c1, c2)
* (
(self.__inertia_weight(wmax) * self.speed[i][var])
+ (c1 * r1 * (best_particle.variables[var] - swarm[i].variables[var]))
+ (c2 * r2 * (best_global.variables[var] - swarm[i].variables[var]))
),
self.delta_max,
self.delta_min,
var,
)
[docs]
def update_position(self, swarm: List[FloatSolution]) -> None:
for i in range(self.swarm_size):
particle = swarm[i]
for j in range(len(particle.variables)):
particle.variables[j] += self.speed[i][j]
if particle.variables[j] < self.problem.lower_bound[j]:
particle.variables[j] = self.problem.lower_bound[j]
self.speed[i][j] *= self.change_velocity1
if particle.variables[j] > self.problem.upper_bound[j]:
particle.variables[j] = self.problem.upper_bound[j]
self.speed[i][j] *= self.change_velocity2
[docs]
def update_global_best(self, swarm: List[FloatSolution]) -> None:
for particle in swarm:
self.leaders.add(copy(particle))
[docs]
def update_particle_best(self, swarm: List[FloatSolution]) -> None:
for i in range(self.swarm_size):
flag = self.dominance_comparator.compare(swarm[i], swarm[i].attributes["local_best"])
if flag != 1:
swarm[i].attributes["local_best"] = copy(swarm[i])
[docs]
def perturbation(self, swarm: List[FloatSolution]) -> None:
for i in range(self.swarm_size):
if (i % 6) == 0:
self.mutation_operator.execute(swarm[i])
[docs]
def select_global_best(self) -> FloatSolution:
leaders = self.leaders.solution_list
if len(leaders) > 2:
particles = random.sample(leaders, 2)
if self.leaders.comparator.compare(particles[0], particles[1]) < 1:
best_global = copy(particles[0])
else:
best_global = copy(particles[1])
else:
best_global = copy(self.leaders.solution_list[0])
return best_global
def __velocity_constriction(self, value: float, delta_max: [], delta_min: [], variable_index: int) -> float:
result = value
if value > delta_max[variable_index]:
result = delta_max[variable_index]
if value < delta_min[variable_index]:
result = delta_min[variable_index]
return result
def __inertia_weight(self, wmax: float):
return wmax
def __constriction_coefficient(self, c1: float, c2: float) -> float:
rho = c1 + c2
if rho <= 4:
result = 1.0
else:
result = 2.0 / (2.0 - rho - sqrt(pow(rho, 2.0) - 4.0 * rho))
return result
[docs]
def init_progress(self) -> None:
self.evaluations = self.swarm_size
self.leaders.compute_density_estimator()
self.initialize_velocity(self.solutions)
self.initialize_particle_best(self.solutions)
self.initialize_global_best(self.solutions)
[docs]
def update_progress(self) -> None:
self.evaluations += self.swarm_size
self.leaders.compute_density_estimator()
observable_data = self.observable_data()
observable_data["SOLUTIONS"] = self.leaders.solution_list
self.observable.notify_all(**observable_data)
[docs]
def result(self) -> List[FloatSolution]:
return self.leaders.solution_list
[docs]
def get_name(self) -> str:
return "SMPSO"
[docs]
class DynamicSMPSO(SMPSO, DynamicAlgorithm):
def __init__(
self,
problem: DynamicProblem[FloatSolution],
swarm_size: int,
mutation: Mutation,
leaders: BoundedArchive,
termination_criterion: TerminationCriterion = store.default_termination_criteria,
swarm_generator: Generator = store.default_generator,
swarm_evaluator: Evaluator = store.default_evaluator,
):
super(DynamicSMPSO, self).__init__(
problem=problem,
swarm_size=swarm_size,
mutation=mutation,
leaders=leaders,
termination_criterion=termination_criterion,
swarm_generator=swarm_generator,
swarm_evaluator=swarm_evaluator,
)
self.completed_iterations = 0
[docs]
def restart(self) -> None:
self.solutions = self.create_initial_solutions()
self.solutions = self.evaluate(self.solutions)
self.leaders.__init__(self.leaders.maximum_size)
self.initialize_velocity(self.solutions)
self.initialize_particle_best(self.solutions)
self.initialize_global_best(self.solutions)
self.init_progress()
[docs]
def update_progress(self):
if self.problem.the_problem_has_changed():
self.restart()
self.problem.clear_changed()
observable_data = self.observable_data()
self.observable.notify_all(**observable_data)
self.evaluations += self.swarm_size
self.leaders.compute_density_estimator()
[docs]
def stopping_condition_is_met(self):
if self.termination_criterion.is_met:
observable_data = self.observable_data()
observable_data["termination_criterion_is_met"] = True
self.observable.notify_all(**observable_data)
self.restart()
self.init_progress()
self.completed_iterations += 1
[docs]
class SMPSORP(SMPSO):
def __init__(
self,
problem: FloatProblem,
swarm_size: int,
mutation: Mutation,
reference_points: List[List[float]],
leaders: List[ArchiveWithReferencePoint],
termination_criterion: TerminationCriterion,
swarm_generator: Generator = store.default_generator,
swarm_evaluator: Evaluator = store.default_evaluator,
):
"""This class implements the SMPSORP algorithm.
:param problem: The problem to solve.
:param swarm_size:
:param mutation:
:param leaders: List of bounded archives.
:param swarm_evaluator: An evaluator object to evaluate the solutions in the population.
"""
super(SMPSORP, self).__init__(
problem=problem,
swarm_size=swarm_size,
mutation=mutation,
leaders=None,
swarm_generator=swarm_generator,
swarm_evaluator=swarm_evaluator,
termination_criterion=termination_criterion,
)
self.leaders = leaders
self.reference_points = reference_points
self.lock = threading.Lock()
thread = threading.Thread(target=_change_reference_point, args=(self,))
thread.start()
[docs]
def initialize_global_best(self, swarm: List[FloatSolution]) -> None:
for particle in swarm:
for leader in self.leaders:
leader.add(copy(particle))
[docs]
def update_global_best(self, swarm: List[FloatSolution]) -> None:
for particle in swarm:
for leader in self.leaders:
leader.add(copy(particle))
[docs]
def select_global_best(self) -> FloatSolution:
selected = False
selected_swarm_index = 0
while not selected:
selected_swarm_index = random.randint(0, len(self.leaders) - 1)
if len(self.leaders[selected_swarm_index].solution_list) != 0:
selected = True
leaders = self.leaders[selected_swarm_index].solution_list
if len(leaders) > 2:
particles = random.sample(leaders, 2)
if self.leaders[selected_swarm_index].comparator.compare(particles[0], particles[1]) < 1:
best_global = copy(particles[0])
else:
best_global = copy(particles[1])
else:
best_global = copy(self.leaders[selected_swarm_index].solution_list[0])
return best_global
[docs]
def init_progress(self) -> None:
self.evaluations = self.swarm_size
for leader in self.leaders:
leader.compute_density_estimator()
self.initialize_velocity(self.solutions)
self.initialize_particle_best(self.solutions)
self.initialize_global_best(self.solutions)
[docs]
def update_progress(self) -> None:
self.evaluations += self.swarm_size
for leader in self.leaders:
leader.filter()
leader.compute_density_estimator()
observable_data = self.observable_data()
observable_data["REFERENCE_POINT"] = self.get_reference_point()
self.observable.notify_all(**observable_data)
[docs]
def update_reference_point(self, new_reference_points: list):
with self.lock:
self.reference_points = new_reference_points
for index, archive in enumerate(self.leaders):
archive.update_reference_point(new_reference_points[index])
[docs]
def get_reference_point(self):
with self.lock:
return self.reference_points
[docs]
def result(self) -> List[FloatSolution]:
result = []
for leader in self.leaders:
for solution in leader.solution_list:
result.append(solution)
return result
[docs]
def get_name(self) -> str:
return "SMPSO/RP"
def _change_reference_point(algorithm: SMPSORP):
"""Auxiliar function to read new reference points from the keyboard for the SMPSO/RP algorithm"""
number_of_reference_points = len(algorithm.reference_points)
number_of_objectives = algorithm.problem.number_of_objectives
while True:
print(f"Enter {number_of_reference_points}-points of dimension {number_of_objectives}: ")
read = [float(x) for x in input().split()]
# Update reference points
reference_points = []
for i in range(0, len(read), number_of_objectives):
reference_points.append(read[i : i + number_of_objectives])
algorithm.update_reference_point(reference_points)