Source code for jmetal.algorithm.multiobjective.spea2

from typing import List, TypeVar

from jmetal.algorithm.singleobjective.genetic_algorithm import GeneticAlgorithm
from jmetal.config import store
from jmetal.core.operator import Crossover, Mutation
from jmetal.core.problem import Problem
from jmetal.operator.replacement import RankingAndDensityEstimatorReplacement, RemovalPolicyType
from jmetal.operator.selection import BinaryTournamentSelection
from jmetal.util.comparator import Comparator, MultiComparator
from jmetal.util.density_estimator import KNearestNeighborDensityEstimator
from jmetal.util.evaluator import Evaluator
from jmetal.util.generator import Generator
from jmetal.util.ranking import StrengthRanking
from jmetal.util.termination_criterion import TerminationCriterion

S = TypeVar("S")
R = TypeVar("R")

"""
.. module:: SPEA2
   :platform: Unix, Windows
   :synopsis: SPEA2  implementation. Note that we do not follow the structure of the original SPEA2 code. We consider
   SPEA2 as a genetic algorithm with binary tournament selection, with a comparator based on the strength fitness and 
   the KNN distance, and a sequential replacement strategy based in iteratively (sequentially) 
   removing the worst solution of the population + offspring population. The worst solutions is selected again 
   considering the strength fitness and KNN distance. Note that the implementation is exactly the same of NSGA-II, 
   but using the fast nondominated sorting and the crowding distance density estimator, and the replacement follows a 
   one-shot scheme (once the solutions are ordered, the best ones are selected without recomputing the ranking and
   density estimator).

.. moduleauthor:: Antonio J. Nebro <antonio@lcc.uma.es>
"""


[docs] class SPEA2(GeneticAlgorithm[S, R]): def __init__( self, problem: Problem, population_size: int, offspring_population_size: int, mutation: Mutation, crossover: Crossover, termination_criterion: TerminationCriterion = store.default_termination_criteria, population_generator: Generator = store.default_generator, population_evaluator: Evaluator = store.default_evaluator, dominance_comparator: Comparator = store.default_comparator, ): """ :param problem: The problem to solve. :param population_size: Size of the population. :param mutation: Mutation operator (see :py:mod:`jmetal.operator.mutation`). :param crossover: Crossover operator (see :py:mod:`jmetal.operator.crossover`). """ multi_comparator = MultiComparator( [StrengthRanking.get_comparator(), KNearestNeighborDensityEstimator.get_comparator()] ) selection = BinaryTournamentSelection(comparator=multi_comparator) super(SPEA2, self).__init__( problem=problem, population_size=population_size, offspring_population_size=offspring_population_size, mutation=mutation, crossover=crossover, selection=selection, termination_criterion=termination_criterion, population_evaluator=population_evaluator, population_generator=population_generator, ) self.dominance_comparator = dominance_comparator
[docs] def replacement(self, population: List[S], offspring_population: List[S]) -> List[List[S]]: """This method joins the current and offspring populations to produce the population of the next generation by applying the ranking and crowding distance selection. :param population: Parent population. :param offspring_population: Offspring population. :return: New population after ranking and crowding distance selection is applied. """ ranking = StrengthRanking(self.dominance_comparator) density_estimator = KNearestNeighborDensityEstimator() r = RankingAndDensityEstimatorReplacement(ranking, density_estimator, RemovalPolicyType.SEQUENTIAL) solutions = r.replace(population, offspring_population) return solutions
[docs] def result(self) -> R: return self.solutions
[docs] def get_name(self) -> str: return "SPEA2"