Source code for jmetal.algorithm.singleobjective.genetic_algorithm
from functools import cmp_to_key
from typing import List, TypeVar
from jmetal.config import store
from jmetal.core.algorithm import EvolutionaryAlgorithm
from jmetal.core.operator import Crossover, Mutation, Selection
from jmetal.core.problem import Problem
from jmetal.operator.selection import BinaryTournamentSelection
from jmetal.util.comparator import Comparator, ObjectiveComparator
from jmetal.util.evaluator import Evaluator
from jmetal.util.generator import Generator
from jmetal.util.termination_criterion import TerminationCriterion
S = TypeVar("S")
R = TypeVar("R")
"""
.. module:: genetic_algorithm
:platform: Unix, Windows
:synopsis: Implementation of Genetic Algorithms.
.. moduleauthor:: Antonio J. Nebro <antonio@lcc.uma.es>, Antonio Benítez-Hidalgo <antonio.b@uma.es>
"""
[docs]
class GeneticAlgorithm(EvolutionaryAlgorithm[S, R]):
def __init__(
self,
problem: Problem,
population_size: int,
offspring_population_size: int,
mutation: Mutation,
crossover: Crossover,
selection: Selection = BinaryTournamentSelection(ObjectiveComparator(0)),
termination_criterion: TerminationCriterion = store.default_termination_criteria,
population_generator: Generator = store.default_generator,
population_evaluator: Evaluator = store.default_evaluator,
solution_comparator: Comparator = ObjectiveComparator(0)
):
super(GeneticAlgorithm, self).__init__(
problem=problem, population_size=population_size, offspring_population_size=offspring_population_size
)
self.mutation_operator = mutation
self.crossover_operator = crossover
self.solution_comparator = solution_comparator
self.selection_operator = selection
self.population_generator = population_generator
self.population_evaluator = population_evaluator
self.termination_criterion = termination_criterion
self.observable.register(termination_criterion)
self.mating_pool_size = (
self.offspring_population_size
* self.crossover_operator.get_number_of_parents()
// self.crossover_operator.get_number_of_children()
)
if self.mating_pool_size < self.crossover_operator.get_number_of_children():
self.mating_pool_size = self.crossover_operator.get_number_of_children()
[docs]
def create_initial_solutions(self) -> List[S]:
return [self.population_generator.new(self.problem) for _ in range(self.population_size)]
[docs]
def evaluate(self, population: List[S]):
return self.population_evaluator.evaluate(population, self.problem)
[docs]
def stopping_condition_is_met(self) -> bool:
return self.termination_criterion.is_met
[docs]
def selection(self, population: List[S]):
mating_population = []
for _ in range(self.mating_pool_size):
solution = self.selection_operator.execute(population)
mating_population.append(solution)
return mating_population
[docs]
def reproduction(self, mating_population: List[S]) -> List[S]:
number_of_parents_to_combine = self.crossover_operator.get_number_of_parents()
if len(mating_population) % number_of_parents_to_combine != 0:
raise Exception("Wrong number of parents")
offspring_population = []
for i in range(0, self.offspring_population_size, number_of_parents_to_combine):
parents = []
for j in range(number_of_parents_to_combine):
parents.append(mating_population[i + j])
offspring = self.crossover_operator.execute(parents)
for solution in offspring:
self.mutation_operator.execute(solution)
offspring_population.append(solution)
if len(offspring_population) >= self.offspring_population_size:
break
return offspring_population
[docs]
def replacement(self, population: List[S], offspring_population: List[S]) -> List[S]:
population.extend(offspring_population)
population.sort(key=cmp_to_key(self.solution_comparator.compare))
return population[: self.population_size]
[docs]
def result(self) -> R:
return self.solutions[0]
[docs]
def get_name(self) -> str:
return "Genetic algorithm"