Source code for jmetal.algorithm.singleobjective.genetic_algorithm

from functools import cmp_to_key
from typing import List, TypeVar

from jmetal.config import store
from jmetal.core.algorithm import EvolutionaryAlgorithm
from jmetal.core.operator import Crossover, Mutation, Selection
from jmetal.core.problem import Problem
from jmetal.operator.selection import BinaryTournamentSelection
from jmetal.util.comparator import Comparator, ObjectiveComparator
from jmetal.util.evaluator import Evaluator
from jmetal.util.generator import Generator
from jmetal.util.termination_criterion import TerminationCriterion

S = TypeVar("S")
R = TypeVar("R")

"""
.. module:: genetic_algorithm
   :platform: Unix, Windows
   :synopsis: Implementation of Genetic Algorithms.
.. moduleauthor:: Antonio J. Nebro <antonio@lcc.uma.es>, Antonio Benítez-Hidalgo <antonio.b@uma.es>
"""


[docs] class GeneticAlgorithm(EvolutionaryAlgorithm[S, R]): def __init__( self, problem: Problem, population_size: int, offspring_population_size: int, mutation: Mutation, crossover: Crossover, selection: Selection = BinaryTournamentSelection(ObjectiveComparator(0)), termination_criterion: TerminationCriterion = store.default_termination_criteria, population_generator: Generator = store.default_generator, population_evaluator: Evaluator = store.default_evaluator, solution_comparator: Comparator = ObjectiveComparator(0) ): super(GeneticAlgorithm, self).__init__( problem=problem, population_size=population_size, offspring_population_size=offspring_population_size ) self.mutation_operator = mutation self.crossover_operator = crossover self.solution_comparator = solution_comparator self.selection_operator = selection self.population_generator = population_generator self.population_evaluator = population_evaluator self.termination_criterion = termination_criterion self.observable.register(termination_criterion) self.mating_pool_size = ( self.offspring_population_size * self.crossover_operator.get_number_of_parents() // self.crossover_operator.get_number_of_children() ) if self.mating_pool_size < self.crossover_operator.get_number_of_children(): self.mating_pool_size = self.crossover_operator.get_number_of_children()
[docs] def create_initial_solutions(self) -> List[S]: return [self.population_generator.new(self.problem) for _ in range(self.population_size)]
[docs] def evaluate(self, population: List[S]): return self.population_evaluator.evaluate(population, self.problem)
[docs] def stopping_condition_is_met(self) -> bool: return self.termination_criterion.is_met
[docs] def selection(self, population: List[S]): mating_population = [] for _ in range(self.mating_pool_size): solution = self.selection_operator.execute(population) mating_population.append(solution) return mating_population
[docs] def reproduction(self, mating_population: List[S]) -> List[S]: number_of_parents_to_combine = self.crossover_operator.get_number_of_parents() if len(mating_population) % number_of_parents_to_combine != 0: raise Exception("Wrong number of parents") offspring_population = [] for i in range(0, self.offspring_population_size, number_of_parents_to_combine): parents = [] for j in range(number_of_parents_to_combine): parents.append(mating_population[i + j]) offspring = self.crossover_operator.execute(parents) for solution in offspring: self.mutation_operator.execute(solution) offspring_population.append(solution) if len(offspring_population) >= self.offspring_population_size: break return offspring_population
[docs] def replacement(self, population: List[S], offspring_population: List[S]) -> List[S]: population.extend(offspring_population) population.sort(key=cmp_to_key(self.solution_comparator.compare)) return population[: self.population_size]
[docs] def result(self) -> R: return self.solutions[0]
[docs] def get_name(self) -> str: return "Genetic algorithm"