Source code for jmetal.problem.multiobjective.dtlz

from math import cos, pi, sin

from jmetal.core.problem import FloatProblem
from jmetal.core.solution import FloatSolution

"""
.. module:: DTLZ
   :platform: Unix, Windows
   :synopsis: DTLZ problem family of multi-objective problems.

.. moduleauthor:: Antonio J. Nebro <antonio@lcc.uma.es>
"""


[docs] class DTLZ1(FloatProblem): """Problem DTLZ1. Continuous problem having a flat Pareto front .. note:: Unconstrained problem. The default number of variables and objectives are, respectively, 7 and 3. """ def __init__(self, number_of_variables: int = 7, number_of_objectives=3): """:param number_of_variables: number of decision variables of the problem.""" super(DTLZ1, self).__init__() self.obj_directions = [self.MINIMIZE] * number_of_objectives self.obj_labels = ["$ f_{} $".format(i) for i in range(number_of_objectives)] self.lower_bound = number_of_variables * [0.0] self.upper_bound = number_of_variables * [1.0]
[docs] def number_of_objectives(self) -> int: return len(self.obj_directions)
[docs] def number_of_variables(self) -> int: return len(self.lower_bound)
[docs] def number_of_constraints(self) -> int: return 0
[docs] def evaluate(self, solution: FloatSolution) -> FloatSolution: k = self.number_of_variables() - self.number_of_objectives() + 1 g = sum( [ (x - 0.5) * (x - 0.5) - cos(20.0 * pi * (x - 0.5)) for x in solution.variables[self.number_of_variables() - k :] ] ) g = 100 * (k + g) solution.objectives = [(1.0 + g) * 0.5] * self.number_of_objectives() for i in range(self.number_of_objectives()): for j in range(self.number_of_objectives() - (i + 1)): solution.objectives[i] *= solution.variables[j] if i != 0: solution.objectives[i] *= 1 - solution.variables[self.number_of_objectives() - (i + 1)] return solution
[docs] def name(self): return "DTLZ1"
[docs] class DTLZ2(DTLZ1): """Problem DTLZ2. Continuous problem having a convex Pareto front .. note:: Unconstrained problem. The default number of variables and objectives are, respectively, 12 and 3. """ def __init__(self, number_of_variables: int = 12, number_of_objectives=3): """:param number_of_variables: number of decision variables of the problem""" super(DTLZ2, self).__init__(number_of_variables, number_of_objectives)
[docs] def evaluate(self, solution: FloatSolution) -> FloatSolution: k = self.number_of_variables() - self.number_of_objectives() + 1 g = sum([(x - 0.5) * (x - 0.5) for x in solution.variables[self.number_of_variables() - k :]]) solution.objectives = [1.0 + g] * self.number_of_objectives() for i in range(self.number_of_objectives()): for j in range(self.number_of_objectives() - (i + 1)): solution.objectives[i] *= cos(solution.variables[j] * 0.5 * pi) if i != 0: solution.objectives[i] *= sin(0.5 * pi * solution.variables[self.number_of_objectives() - (i + 1)]) return solution
[docs] def name(self): return "DTLZ2"
[docs] class DTLZ3(DTLZ1): """Problem DTLZ3. Continuous problem having a convex Pareto front .. note:: Unconstrained problem. The default number of variables and objectives are, respectively, 12 and 3. """ def __init__(self, number_of_variables: int = 12, number_of_objectives=3): """:param number_of_variables: number of decision variables of the problem""" super(DTLZ3, self).__init__(number_of_variables, number_of_objectives)
[docs] def evaluate(self, solution: FloatSolution) -> FloatSolution: k = self.number_of_variables() - self.number_of_objectives() + 1 g = sum( [(x - 0.5) ** 2 - cos(20.0 * pi * (x - 0.5)) for x in solution.variables[self.number_of_variables() - k :]] ) g = 100.0 * (k + g) f = [1.0 + g for _ in range(self.number_of_objectives())] for i in range(self.number_of_objectives()): for j in range(self.number_of_objectives() - (i + 1)): f[i] *= cos(solution.variables[j] * 0.5 * pi) if i != 0: aux = self.number_of_objectives() - (i + 1) f[i] *= sin(solution.variables[aux] * 0.5 * pi) solution.objectives = [f[x] for x in range(self.number_of_objectives())] return solution
[docs] def name(self): return "DTLZ3"
[docs] class DTLZ4(DTLZ1): """Problem DTLZ4. Continuous problem having a convex Pareto front .. note:: Unconstrained problem. The default number of variables and objectives are, respectively, 12 and 3. """ def __init__(self, number_of_variables: int = 12, number_of_objectives=3): """:param number_of_variables: number of decision variables of the problem""" super(DTLZ4, self).__init__(number_of_variables, number_of_objectives)
[docs] def evaluate(self, solution: FloatSolution) -> FloatSolution: alpha = 100.0 k = self.number_of_variables() - self.number_of_objectives() + 1 g = sum([(x - 0.5) ** 2 for x in solution.variables[self.number_of_variables() - k :]]) f = [1.0 + g for _ in range(self.number_of_objectives())] for i in range(self.number_of_objectives()): for j in range(self.number_of_objectives() - (i + 1)): f[i] *= cos(pow(solution.variables[j], alpha) * pi / 2.0) if i != 0: aux = self.number_of_objectives() - (i + 1) f[i] *= sin(pow(solution.variables[aux], alpha) * pi / 2.0) solution.objectives = [f[x] for x in range(self.number_of_objectives())] return solution
[docs] def name(self): return "DTLZ4"
[docs] class DTLZ5(DTLZ1): """Problem DTLZ5. Continuous problem having a convex Pareto front .. note:: Unconstrained problem. The default number of variables and objectives are, respectively, 12 and 3. """ def __init__(self, number_of_variables: int = 12, number_of_objectives=3): """:param number_of_variables: number of decision variables of the problem""" super(DTLZ5, self).__init__(number_of_variables, number_of_objectives)
[docs] def evaluate(self, solution: FloatSolution) -> FloatSolution: k = self.number_of_variables() - self.number_of_objectives() + 1 g = sum([(x - 0.5) ** 2 for x in solution.variables[self.number_of_variables() - k :]]) t = pi / (4.0 * (1.0 + g)) theta = [0.0] * (self.number_of_objectives() - 1) theta[0] = solution.variables[0] * pi / 2.0 theta[1:] = [t * (1.0 + 2.0 * g * solution.variables[i]) for i in range(1, self.number_of_objectives() - 1)] f = [1.0 + g for _ in range(self.number_of_objectives())] for i in range(self.number_of_objectives()): for j in range(self.number_of_objectives() - (i + 1)): f[i] *= cos(theta[j]) if i != 0: aux = self.number_of_objectives() - (i + 1) f[i] *= sin(theta[aux]) solution.objectives = [f[x] for x in range(self.number_of_objectives())] return solution
[docs] def name(self): return "DTLZ5"
[docs] class DTLZ6(DTLZ1): """Problem DTLZ6. Continuous problem having a convex Pareto front .. note:: Unconstrained problem. The default number of variables and objectives are, respectively, 12 and 3. """ def __init__(self, number_of_variables: int = 12, number_of_objectives=3): """:param number_of_variables: number of decision variables of the problem""" super(DTLZ6, self).__init__(number_of_variables, number_of_objectives)
[docs] def evaluate(self, solution: FloatSolution) -> FloatSolution: k = self.number_of_variables() - self.number_of_objectives() + 1 g = sum([pow(x, 0.1) for x in solution.variables[self.number_of_variables() - k :]]) t = pi / (4.0 * (1.0 + g)) theta = [0.0] * (self.number_of_objectives() - 1) theta[0] = solution.variables[0] * pi / 2.0 theta[1:] = [t * (1.0 + 2.0 * g * solution.variables[i]) for i in range(1, self.number_of_objectives() - 1)] f = [1.0 + g for _ in range(self.number_of_objectives())] for i in range(self.number_of_objectives()): for j in range(self.number_of_objectives() - (i + 1)): f[i] *= cos(theta[j]) if i != 0: aux = self.number_of_objectives() - (i + 1) f[i] *= sin(theta[aux]) solution.objectives = [f[x] for x in range(self.number_of_objectives())] return solution
[docs] def name(self): return "DTLZ6"
[docs] class DTLZ7(DTLZ1): """Problem DTLZ6. Continuous problem having a disconnected Pareto front .. note:: Unconstrained problem. The default number of variables and objectives are, respectively, 22 and 3. """ def __init__(self, number_of_variables: int = 22, number_of_objectives=3): """:param number_of_variables: number of decision variables of the problem""" super(DTLZ7, self).__init__(number_of_variables, number_of_objectives)
[docs] def evaluate(self, solution: FloatSolution) -> FloatSolution: k = self.number_of_variables() - self.number_of_objectives() + 1 g = sum([x for x in solution.variables[self.number_of_variables() - k :]]) g = 1.0 + (9.0 * g) / k h = sum( [(x / (1.0 + g)) * (1 + sin(3.0 * pi * x)) for x in solution.variables[: self.number_of_objectives() - 1]] ) h = self.number_of_objectives() - h solution.objectives[: self.number_of_objectives() - 1] = solution.variables[: self.number_of_objectives() - 1] solution.objectives[-1] = (1.0 + g) * h return solution
[docs] def name(self): return "DTLZ7"