[1]:
from jmetal.algorithm.multiobjective.nsgaii import NSGAII
from jmetal.operator.crossover import SBXCrossover
from jmetal.operator.mutation import PolynomialMutation
from jmetal.problem import ZDT1
from jmetal.util.termination_criterion import StoppingByEvaluations
problem = ZDT1()
max_evaluations = 25000
algorithm = NSGAII(
problem=problem,
population_size=100,
offspring_population_size=100,
mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20),
crossover=SBXCrossover(probability=1.0, distribution_index=20),
termination_criterion=StoppingByEvaluations(max=max_evaluations)
)
algorithm.run()
solutions = algorithm.get_result()
We can now visualize the Pareto front approximation:
[3]:
from jmetal.lab.visualization.plotting import Plot
from jmetal.util.solution import get_non_dominated_solutions
front = get_non_dominated_solutions(solutions)
plot_front = Plot(plot_title='Pareto front approximation', axis_labels=['x', 'y'])
plot_front.plot(front, label='NSGAII-ZDT1')
Bases: GeneticAlgorithm
[S
, R
]
This method joins the current and offspring populations to produce the population of the next generation by applying the ranking and crowding distance selection.
population – Parent population.
offspring_population – Offspring population.
New population after ranking and crowding distance selection is applied.