[1]:
from jmetal.algorithm.multiobjective.mocell import MOCell
from jmetal.operator.crossover import SBXCrossover
from jmetal.operator.mutation import PolynomialMutation
from jmetal.problem import ZDT4
from jmetal.util.archive import CrowdingDistanceArchive
from jmetal.util.neighborhood import C9
from jmetal.util.termination_criterion import StoppingByEvaluations
problem = ZDT4()
max_evaluations = 25000
algorithm = MOCell(
problem=problem,
population_size=100,
neighborhood=C9(10, 10),
archive=CrowdingDistanceArchive(100),
mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20),
crossover=SBXCrossover(probability=1.0, distribution_index=20),
termination_criterion=StoppingByEvaluations(max=max_evaluations)
)
algorithm.run()
front = algorithm.get_result()
We can now visualize the Pareto front approximation:
[3]:
from jmetal.lab.visualization.plotting import Plot
plot_front = Plot(plot_title='Pareto front approximation', axis_labels=['x', 'y'])
plot_front.plot(front, label='MOCell-ZDT4')
Bases: GeneticAlgorithm
[S
, R
]
Replace least-fit population with new individuals.